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Abstract

Healthcare-associated infections (HAIs), or nosocomial infections, refer to patients getting new 

infections while getting treatment for an existing condition in a healthcare facility. HAI poses a 

significant challenge in healthcare delivery that results in higher rates of mortality and morbidity 

as well as a longer duration of hospital stay. While the real cause of HAI in a hospital varies 

widely and in most cases untraceable, it is popularly believed that patient flow in a hospital—

which hospital units patients visit and where they spend the most time since their admission 

into the hospital—can trace back to HAI incidence in the hospital. Based on this observation, 

we, in this paper, model and simulate patient flow in an emergency department of a hospital 

and then utilize the developed model to study HAI incidence therein. We obtain (a) a flowchart 

of patient movement (admission to discharge) and (b) anonymous patient data from University 

Health Medical Center for a duration of 11 months (Aug 2022–June 2023). Based on these data, 

we develop and validate the patient flow model. Our model captures patient movement in different 

areas of a typical emergency department, such as triage, waiting room, and minor procedure 

rooms. We employ the discrete-event simulation (DES) technique to model patient flow and 

associated HAI infections using the simulation software, Anylogic. Our simulation results show 

that the rates of HAI incidence are proportional to both the specific areas patients occupy and 

the duration of their stay. By utilizing our model, hospital administrators and infection control 

teams can implement targeted strategies to reduce the incidence of HAI and enhance patient safety, 

ultimately leading to improved healthcare outcomes and more efficient resource allocation.
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1. Introduction

Healthcare-Associated Infections (HAIs) are infections that individuals acquire while 

receiving medical care in a healthcare facility. As per the US Centers for Disease Control 

and Prevention (CDC, 2018), in the United States, on any given day, approximately 1 out of 

every 31 patients admitted to a hospital is affected by at least one healthcare-associated 

infection (HAI). Nearly 1.7 million patients in the US acquire healthcare-associated 

infections annually, resulting in over 98,000 deaths. The consequences of HAIs extend 

beyond the individual, significantly impacting the healthcare system. These infections 

can lead to heightened illness, increased mortality rates, prolonged hospital stays, and 

additional strains on healthcare resources. The financial burden and challenges in treatment 

further amplify the impact, emphasizing the need for effective prevention strategies and a 

comprehensive understanding of the factors contributing to these infections.

The Emergency Department (ED) of a hospital is a critical location in healthcare where 

people seek urgent care. Just like other units in a hospital, the emergency department 

is subject to the hazards of HAI incidence. The fast-paced and dynamic nature of 

emergency treatment, combined with the rush of patients, provides a situation where HAI 

occurrences are more likely. The complexity of infection threats in the ED is further 

complicated by factors such as fast patient turnover, variable medical states, and the 

urgency of interventions. Understanding the factors affecting HAI incidences in an ED is 

very important, which this paper attempts to address. To properly address this issue, we 

need a detailed understanding as well as strategies. Exploring how patients move through 

the healthcare system is an important aspect. Healthcare practitioners obtain significant 

insights into the pathways via which infections may spread by describing and researching 

HAIs through the analysis and modeling of detailed patient flow. Understanding a patient’s 

journey—from admittance to various healthcare units as she encounters medical staff or 

devices, and then finally gets discharged—provides a comprehensive picture. Healthcare 

practitioners can use computer simulation approaches to replicate and examine various 

scenarios, allowing them to discover possible infection hotspots, review existing protocols, 

and adopt focused interventions.

Key principles and concepts in patient flow modeling concentrate on tracing a patient’s 

whole journey across a healthcare system, particularly in an emergency department area. 

This includes understanding the flow of patients from admission through various stages 

of care, such as triage, waiting areas, and various medical procedures, and the eventual 

discharge at the end. The process should also consider the cases of patients leaving halfway 

without being seen or taking any therapeutic response. Furthermore, the model should 

consider elements such as the duration of time spent at every stage, transitions between 

areas, and contacts with healthcare personnel. Examining these factors provides healthcare 
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workers with an understanding of the system’s efficiency, potential bottlenecks, and areas 

where modifications may be made to improve patient care as well as to contain and limit 

HAI incidence.

In our modeling approach, we utilize the technique of discrete-event simulation to 

model patient flow and HAI incidence in an Emergency Department (ED) in a hospital. 

This method creates a dynamic, time-dependent model that simulates patients’ real-time 

movement through the ED areas and service points. Using this model, we can observe 

and study the occurrence of HAIs by simulating the intricate interactions between patients 

and numerous departments. This method depicts the healthcare environment in great detail 

and reality, providing helpful information about potential infection areas and the impact of 

patient flow on HAI incidence.

Toward this end, we develop a data-driven simulation model to explore the dynamics of 

patient movement in an Emergency Department (ED) of a hospital and the associated 

influence of various factors on HAI incidence among patients in the ED. Our proposed 

model considers different aspects within ED: the reasons for patient visits, different regions/

service areas patients visit (e.g., triage, testing, and assessment), and the duration of their 

stay in those areas. We obtained a detailed flowchart of patient movement in different areas 

of an ED from the University Health Medical Center in Kansas City (the hospital is the 

official partner of this research project). We also obtained, from the same hospital, eleven 
months of data (Aug 2022 to Jun 2023) on patient admissions, discharges, patients leaving 

without being seen, the amount of time they spent in waiting areas, and the suspected HAI 

cases among admitted patients in ED. These are real patient data who were admitted and 

serviced in the ED in University Health Medican Center during the mentioned period, with 

patients’ personal and identifiable information withheld (this data is obtained following 

proper IRB (Institution Review Board) approval at the respective institutions). We used this 

data extensively to build our model as well as to validate the model.

The goal of our patient flow modeling is to provide a comprehensive understanding of how 

different factors interplay and affect the overall impact of healthcare-associated infections 

in the Emergency Department. The data obtained from the hospital is used to validate the 

simulation model, this is, to estimate the values of unknown parameters of the simulation 

model. To further study the impact of infection in ED, the simulation model is tested on 

three different “synthetic” scenarios: (a) doubling the patient arrival rate, (b) fewer beds 

available in the ED, and (c) higher severity of illnesses in incoming patients. Based on the 

simulation outputs, we subsequently demonstrate that patients in the ED are at a higher 

risk of infection in those scenarios compared to the baseline operations. Even though 

our modeling is based on the flowchart and patient data obtained from University Health 

Medical Center, our observation should hold for other tertiary hospitals.

Our paper makes the following contributions:

• Develop a detailed simulation model of patient flow in an emergency department 

in a hospital.
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• Analyze real healthcare and HAI-related data obtained from University Health 

Medical Center, which we use for both building the model and validating the 

model (estimating its free parameters).

• Build the patient flow and HAI/infection model using state-of-the-art simulation 

software, AnyLogic.

• Analyze simulation output against the real-world data to validate the simulated 

model.

• Generate synthetic simulated scenarios (“alternate realities“) to analyze the 

effects of certain changes (e.g., changes in the number of beds) on HAI incidence 

in the simulation environment in an ED.

The rest of the paper is as follows: Section 2 shows the impact of HAIs and the preventative 

tactics used in the industry through a literature review, Section 3 discusses the procedure 

and model creation, Section 4 analyzes data provided by University Health Medical Center 

and obtains the simulation model results for three different case scenarios, finally, Section 5 

concludes this paper with a remark on future research directions in this area.

2. Literature review

In a study published by Casey and Chasens (2009), they addressed the challenges of 

detecting potential infections or colonization of patients by microorganisms, particularly 

those significant for public health, within the Emergency Department. They emphasized 

the complexity of accurately and promptly identifying these instances, attributing it to 

the dynamic and fast-paced nature of the emergency care environment. Hospital-acquired 

infections, or HAIs, represent a significant public health issue. An estimated 1.7 million 

infections and 99,000 fatalities annually in the US are attributed to HAIs. Harmful 

pathogens causing Healthcare-Associated Infections (HAIs) come from various sources. 

Key types include Central Line-Associated Bloodstream Infections (CLABSI), Catheter-

Associated Urinary Tract Infections (CAUTI), Surgical Site Infections (SSI), and Ventilator-

Associated Pneumonia (VAP). Other HAIs encompass non-ventilator-associated hospital-

acquired pneumonia (NV-HAP), and gastrointestinal and urinary tract infections. HAIs 

are also categorized by affected systems according to Sikora and Zahra (2020), such as 

respiratory, skin, cardiovascular, bone, joint, central nervous system, and reproductive tract 

infections. Per the findings of Surapaneni (2015), MRSA was the most common isolated 

bacterial species at 10 of the 11 EDs. In a study by Alrashid et al. (2022), the occurrence of 

urinary tract infections (UTIs) in patients admitted through the Emergency Department (ED) 

was found to be 10.5 percent. This implies that approximately 10.5 out of every 100 patients 

admitted through the ED were diagnosed with a urinary tract infection.

In their study, Dadi, Radochová, Vargová, and Bujdáková (2021) investigated the impact 

of healthcare-associated infections (HAI), particularly focusing on device-associated 

infections such as central line-associated bloodstream infections, catheter infections, 

catheter-associated urinary tract infections, ventilator-associated pneumonia, and surgical 

site infections. The paper underscores the significance of detailed infection recording, 

adherence to hygiene measures, and preventive strategies to enhance care quality and reduce 
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hospital costs. Another study aimed by Stewart et al. (2021) to report the Length of Stay 

(LOS) for patients with and without Healthcare-Associated Infections (HAI) and identify 

the specific types of HAI that contribute most significantly to the excess LOS by using a 

multi-state model.

Through a multidisciplinary approach and rigorous data analysis, another paper by Halperin 

et al. (2016) has achieved a 53 percent reduction in total Healthcare-Associated Infections 

(HAIs) over 18 months. This improvement was driven by a decrease in urinary catheter use 

and reduced patient transport from the Intensive Care Unit (ICU) for imaging procedures. 

Another author named Almeida (2015) was able to establish a risk for HAIs in emergency 

rooms (EDs) in crowded waiting spaces. Recent advancements in infection prevention 

(IP) technologies Pryor and Bearman (2022) tried to encompass electronic hand hygiene 

monitoring systems, antimicrobial textiles, ultraviolet C (UV-C) devices, and the integration 

of decision-support tools and predictive analytics using machine learning into electronic 

medical records (EMRs). These innovations aim to prevent healthcare-associated infections 

(HAIs). Furthermore, the importance of environmental factors is being highlighted by 

Gajendran, Kabir, Vadivelu, Ng, and Thota (2023) by incorporating Machine Learning (ML) 

techniques into the evaluation of Indoor Environmental Quality (IEQ). Leveraging IEQ 

techniques has the potential to improve environmental quality in congested areas such as 

emergency departments, as well as to improve strategies for preventing HAI transmission.

To enhancing the efficiency of the Hospital’s Emergency Department (ED) (Abourraja et 

al., 2022) explored data-driven simulation of workflow and layout designs, with a focus on 

optimizing resource utilization and reducing waiting times by introducing a dedicated ward 

for patients with complex diagnoses (capacity of fewer than 20 beds) as a key strategy for 

achieving lower waiting times

These authors (Terning, Brun, & El-Thalji, 2022) offered a comprehensive and transparent 

description of constructing a multimethod simulation model that replicates realistic patient 

flow within an emergency department during the COVID-19 pandemic using a hybrid agent-

based simulation model to explore how an elevated patient infection rate affects emergency 

department patient flow. The findings by Terning, El-Thalji, and Brun (2023) reveal that 

higher infection rates correlate with worsened metrics, specifically longer average length of 

stay and increased crowding, particularly with the introduction of waiting functions.

While these studies prioritize optimizing resource utilization, reducing waiting times, and 

simulating realistic patient flow with consideration for infection rates, they fall short in 

specifying the particular locations within the hospital setting where infections can occur. 

Additionally, none of the studies include modeling for hospital-acquired infections (HAIs), 

leaving a gap in understanding the localized dynamics of infection spread and its impact on 

patient care.

3. Procedure and modeling

In selecting the hospital Emergency Department (ED) as our modeling focus, the intricate 

dynamics of patient flow within a healthcare setting take center stage. A well-defined patient 
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flow model is crucial for understanding and optimizing healthcare operations. This section 

will meticulously outline the procedures adopted and the models employed, shedding light 

on how our approach contributes to advancing both the theoretical and practical aspects of 

healthcare management.

3.1. Healthcare facility details

This paper provides a retrospective analysis of emergency department (ED) data spanning 

from 2018 to 2023 at University Health Medical Center, focusing on a facility with almost 

4000 employees. Over this period, the ED accommodated about 60 thousand patient visits, 

resulting in almost 16,000 hospitalizations. The dataset includes information on the day 

of the week patients present to the ED, daily patient volumes, admission rates, total 

ED duration, average wait times, instances of patients going Away Without Therapeutic 

Response (AWTR), and cases of patients leaving without being seen by a physician 

(LWBS). The analysis sheds light on patterns in ED utilization, offering insights into patient 

flow and outcomes. Even though the data spans 2018–2023, we used the latest 11 months of 

data from Aug 2022 to Jun 2023 for model validation and other purposes.

3.2. Patient flow model

We have developed a comprehensive patient flow model, depicted in Fig. 1, to provide 

a visual representation of the dynamics within our University Health Medical Center’s 

emergency department. This illustration offers a detailed insight into the intricate process 

of how patients navigate through various stages within the emergency department. In 

our model, patients arrive at the emergency department in two ways: by walking in or 

by ambulance (EMS). All admitted patients go through the triage area to do an initial 

assessment. From there, depending on the severity of the illness, a patient either gets a bed 

immediately in the ED or goes to the other assessment areas.

Consider patients who arrive by EMS and have a higher severity of illness. They get a bed 

immediately depending on the bed availability and continue their ED treatment processes as 

shown in Fig. 1. On the other hand, patients who arrive by walking in or have a lower illness 

severity level do not warrant any immediate bed but go directly to the assessment areas 

after the triage. Based on the triage assessment, patients may undergo additional assessments 

depending on their needs, which include diagnostic tests such as blood work, imaging, and 

consultations with specialists. Throughout the ED process, patients are also monitored for 

potential safety risks, such as falls, medication interactions, or allergic reactions. Patients 

with higher triage levels are seen by a healthcare provider sooner.

The patient who needs a bed gets one if a bed is available. Else they go to a waiting room 

to wait until a bed is free by another patient. While waiting, some patients choose to leave, 

which could be due to various reasons, such as long wait times, deciding against treatment, 

and seeking care elsewhere. These cases are popularly labeled as LWBS (Left Without 

Being Seen). Other patients will eventually get a bed and will go through the rest of the 

process.

After having lab tests, diagnostics tests, and multiple assessments done with a patient, the 

hospital staff decides if the patient needs further observation and treatment by observing 
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their test and assessment reports. If their condition is deemed mild and appears manageable 

at home, they are discharged with a follow-up order written and prepared for them. 

Otherwise, they are admitted to the “inpatient care” and transferred to another department 

of the hospital based on their health issues. In between different stages and waiting, some 

patients may prefer to leave the hospital, which is referred to as AWTR (Away With 

Therapeutic Response) cases.

3.3. Modeling patient-flow using AnyLogic

In this study, we use the AnyLogic simulation tool and employ the Discrete Event Modeling 

(DEM) technique to model how patients move through healthcare systems (as narrated 

above). DEM is like a detailed clock that captures specific events in time, making it great 

for simulating timed “events”. Patient flow, which involves managing queues and waiting 

times, is a crucial aspect of any healthcare system. Using DEM in AnyLogic allows us to 

realistically model these queues and waiting times, helping us find potential issues and areas 

where we can make healthcare processes better. So, by using AnyLogic and DEM, we aim 

to get a comprehensive understanding of patient flow dynamics and find ways to improve 

how healthcare is delivered.

Fig. 2 represents the simulation model of the earlier described patient flowchart, as appears 

in Fig. 1. This simulation model is constructed utilizing AnyLogic. Each component within 

Fig. 2 is assigned specific values, enabling a comprehensive and dynamic depiction of the 

patient flow in our University Health Medical Center’s Emergency Department (ED). In ED, 

the space is usually divided into three distinct activity areas. The first area, denoted as Area 

1 and marked in blue, serves as the Waiting Area. Here, patients await their turn for a bed. 

The second zone, Area 2, distinguished by its green color, functions as the Service Area. 

In this space, patients undergo various treatments and assessments. The final zone, Area 3, 

represents the concluding stage of the ED journey. Here, patients receive decisions regarding 

discharge or admission to inpatient care.

3.3.1. Simulation entities—We utilize the “Process Modeling Library” of AnyLogic to 

build our patient flow simulation model. The simulation entities are placed and connected 

to mimic the dynamic processes of patients going through steps in an ED. The model 

incorporates a “source” block, initiating the simulation by generating agents representing 

patients. These agents are drawn from a database designed to introduce variability in patient 

attributes, and their generation is controlled by a “schedule” block, allowing for day-specific 

agent generation rates.“Decision” blocks are strategically placed throughout the model to 

determine agent flow based on predefined conditions, while “delay” blocks replicate real-

world time intervals for activities such as waiting, diagnostics and treatments. We have used 

some datasets and functions from the “statistics” palette for storing the data to visualize the 

results later. The seamless integration of these simulation entities facilitates a comprehensive 

representation of the complexities within a healthcare environment, capturing patient 

movements, decision-making processes, and resource utilization dynamics.

3.3.2. Modeling delay blocks—The foundation of delay blocks in our simulation 

lies in the distribution of delays. Drawing from both literature reviews and real data, we 
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determined the delay block values used in our model diagram (see Fig. 2). In most cases, 

delays follow a Uniform distribution, except for waiting room time and service room time, 

which follow Gamma distributions (fitted based on the hospital data).

One of the key items of interest in an emergency department’s operation is the “length of 

stay” (LOS), the amount of time spent by a patient from entry to exit in the ED (either 

being discharged, left without treatments, or admitted inpatient care). Average LOS serves 

as a pivotal parameter in the model, reflecting the typical duration a patient spends in 

the department. In our hospital data, the average LOS in ED is 5.5 h. We set the delay 

distributions in various delay blocks in the model so that the total time, on average, sums to 

5.5 h. Comprising delay blocks aligned with real-world observations, each corresponding to 

specific ED stages, the model ensures a realistic portrayal of patient interactions.

Consequently, two critical modeling constraints are imposed: first, the conservation of time, 

ensuring that all time durations sum up to the average LOS; and second, total duration 

alignment, requiring the sum of individual delay block durations to be consistent with the 

calculated average Length Of Stay. These constraints enhance the model’s fidelity, capturing 

both the statistical average and temporal dynamics of patient flow within the emergency 

department, thereby contributing to a comprehensive evaluation of the ED’s performance 

and efficiency.

Table 1 gives the names of the delay blocks, their delay distributions, and their average 

times.

3.3.3. Model parameters—Parameters play a critical role in shaping our modeling 

approach, serving as pivotal factors that influence decision-making within our simulation. 

These parameters essentially act as guiding rules, exerting a significant impact on the entire 

simulation process. Table 2 outlines six key parameters that are central to our model. It is 

noteworthy that altering any one of these parameters has the potential to substantially alter 

the overall outcome of the simulation.

For instance, let us consider the parameter “bed availability”. This particular parameter 

holds considerable importance due to its direct influence on the computational dynamics 

of the simulation. The value assigned to “bed availability” is a key determinant in the 

simulation’s results. Changing the number of available beds directly affects critical aspects, 

such as the number of patients who may leave without being seen.

To ensure the validity of our simulation, we prioritize realistic and meaningful parameters. 

To achieve this, we have conducted parameter optimization, refining values based on our 

dataset. This process enhances the accuracy of our simulation, aligning it closely with 

real-world dynamics for more reliable insights.

The simulation experiment incorporated various parameters, including immediate bedding 

with a value of 0.2 fixed we got it from the data as it depends on the severity of patients, 

a fixed available bed count of 39 for 2–4 h. Additionally, there are values assigned to 

the decision factors such as the likelihood of deciding to stay1 (0.96), then deciding to 

stay2 (0.98), and opting for inpatient care (0.09). These values we got from using the 

Sara et al. Page 8

Smart Health. Author manuscript; available in PMC 2024 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



parameter optimization method. The goal of the experiment was to assess the impact of 

these parameters on resource utilization, length of stay, number of patients staying in the 

hospital, and number of infections. The parameters were categorized as fixed, variable, and 

discrete, and the objective was to identify optimal parameter values that minimize the gap 

value which is shown in Table 2.

3.4. Modeling HAI risk in emergency department

In our model, we focus on three key sections within ED: namely (1) The waiting area 

(Area 1), (2) the service area (Area 2), and (3) the concluding stage (Area 3), as shown 

in Fig. 2. These zones align with specific activities: patient entry, medical procedures, and 

discharge/admission decisions. Our approach aims to uncover how infections may relate to 

these distinct ED areas, offering insights into healthcare-associated infections (HAIs) shown 

in Fig. 4. This intentional segmentation enables us to assert that the occurrence of infections 

is intricately tied to both the specific locations patients traverse and the duration of their 

stay within these areas. By leveraging the infection rates depicted in Fig. 3 to model various 

regions, we acquire a nuanced insight into the distinct risk profiles associated with each 

section of the Emergency Department (ED). This enhances our ability to conduct a more 

thorough analysis of infection dynamics within the healthcare setting.

Within the spectrum of infections considered, our primary focus encompasses Urinary Tract 

Infections (UTIs), Methicillin-Resistant Staphylococcus Aureus (MRSA), and other types of 

Healthcare-Associated Infections (HAIs). In the Emergency Department (ED), the risk of 

Urinary Tract Infections (UTIs) and Methicillin-Resistant Staphylococcus Aureus (MRSA) 

are heightened due to prolonged patient stays, exposure to various medical devices, and the 

close proximity of individuals with different health conditions. The frequent use of catheters 

and other medical instruments in the ED increases susceptibility to UTIs, while the dynamic 

and crowded environment raises the likelihood of MRSA transmission among patients 

with compromised immune systems. These specific HAI categories have been strategically 

utilized in various areas within our modeling framework to quantify the spread of infections. 

This targeted approach allows us to discern distinct patterns and dynamics associated with 

UTI, MRSA, and other HAIs, contributing to a comprehensive understanding of infection 

transmission within different sections of the modeled environment.

3.4.1. Effects of waiting room dynamics on HAIs—In the Emergency Department 

(ED), the waiting room holds particular importance, especially for patients with lower illness 

severity or those awaiting bed availability. This area is marked by prolonged waiting times, 

and its significance lies in exposing individuals, often with compromised immunity due to 

various medical conditions, to a diverse range of illnesses. The waiting room serves as a 

convergence point for patients with different health concerns, potentially increasing the risk 

of susceptibility to Healthcare-Associated Infections (HAIs). In our meticulous modeling 

framework of the ED, where we delineate waiting, service, and comprehensive areas, the 

waiting room emerges as a key focus.

In particular, our focus within the waiting room area is on the occurrence of infections, 

with a special emphasis on MRSA and other potential infections. It is worth noting that, 
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based on our historical data, we have derived that 1/3 of the total Healthcare-Associated 

Infections (HAIs), including MRSA, originate in the waiting room area. This specific focus 

underscores the importance of understanding and mitigating the risk of infections in this 

critical space, contributing to a comprehensive and targeted approach in our simulation 

model of the Emergency Department (ED).

3.4.2. Effects of service area dynamics on HAIs—Within our modeling 

framework, which meticulously delineates three integral sections within the emergency 

department (ED), the role of healthcare-associated infection (HAI) transmission is 

particularly accentuated in the service area. This sector, dedicated to essential medical 

procedures such as labs, diagnostic tests, and assessments, poses a unique risk environment. 

Here, patients are exposed to an array of medical devices and instruments, fostering an 

intricate interplay between patients, healthcare professionals, and equipment which is shown 

in Fig. 5. This close interaction establishes a potential pathway for the transmission of 

infections, as discussed in Puspasari, Ridhova, Hermawan, Amal, and Khan (2022).

The prolonged duration of patient stays in the service area, both during waiting periods 

and while receiving medical services, significantly increases the likelihood of infection 

transmission. Our modeling approach specifically identifies the service area as a zone with 

an elevated risk profile, with particular attention to the prevalence of urinary tract infections 

(UTIs) and Methicillin-Resistant Staphylococcus Aureus (MRSA) within this critical zone. 

Utilizing our data, we have incorporated the observation that 75% of UTI infections occur 

in the service area, as this is a location where patients may be more susceptible to infections 

due to contact with medical devices such as catheters.

3.4.3. Effects of other areas on HAIs—In addition to the previously highlighted focal 

points of the emergency department (ED), namely the waiting room and service area, our 

comprehensive modeling approach underscores the significance of other critical areas within 

the ED landscape. Notably, the admission room for inpatients and the discharge room, while 

representing relatively brief phases in patient interaction, emerge as pivotal stages given 

their position as the concluding steps in the ED journey.

Despite the relatively shorter duration of patient stays in these areas, their significance lies 

in serving as the concluding phases after extended periods within the ED. Here, the potential 

for infection transmission persists, exemplified by the heightened risk of pathogens such 

as MRSA. Beyond these terminal phases, our modeling discerns that infections, including 

but not limited to Enterocolitis due to Clostridium difficile and candidiasis of skin and nail, 

may manifest during the overall ED stay. Our modeling paradigm is inherently centered on 

the premise that infection spread is proportionate to the duration of patients’ sojourn in the 

ED. This approach helps us explore the different ways infections can happen throughout the 

entire ED. It gives us a fuller picture of how germs might move around and affect patients 

during their time in the emergency department.
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4. Results and analysis

Our analysis consists of two parts. First, we analyze the historical patient admission and 

discharge data from University Health Medical Center . We also use the data to validate our 

simulation model. Second, we analyze the simulation outputs for three scenarios to study the 

impact of various parameters affecting HAI incidence in ED.

4.1. Analysis of hospital data

We analyzed an extensive dataset encompassing ED visits and subsequent referrals during 

the period from 2022 to 2023. Key variables extracted from the local hospital’s records 

included the registration fishnet, date, month, the count of LWBS (patients leaving without 

being seen), the count of AWTR (patients leaving without receiving full treatment), Length 

of Stay (LOS) in the Emergency Department (ED), waiting periods, the number of infections 

recorded, and the count of inpatients. This comprehensive dataset forms the foundation for 

a thorough investigation into the dynamics of ED operations, patient flow, and the potential 

impact on healthcare outcomes, providing valuable insights for further understanding and 

optimization of emergency care services.

Our examination involved scrutinizing daily patient arrival patterns and analyzing infection 

counts on different days. The objective was to establish connections and discern potential 

correlations between patient arrivals and infectious incidences. The key insights derived 

from our dataset analysis are presented in Table 3.

The number of patients visiting the emergency department (ED) each day varies, with the 

most common number of patients being between 140 and 180 as shown in Fig. 6. This 

information has been used to staff the ED appropriately and to identify potential bottlenecks 

in patient care.

The analysis of patient arrival rates, depicted through line graphs, reveals notable 

distinctions between weekdays and weekends, as shown in Fig. 6. We conducted a thorough 

analysis comparing patient arrivals on weekdays and weekends to investigate potential 

correlations with infection rates. This investigation aimed to discern any patterns or 

relationships between the timing of patient influx and the occurrence of infections within the 

studied context. Weekdays exhibit higher variability in patient arrival rates, with an overall 

higher average compared to weekends. Further scrutiny of the line graph indicates that 

Wednesdays stand out as having the highest patient arrival rates. Based on the investigation 

by Dubois et al. (2017) this observation is attributed to a surge in emergency cases, notably 

stemming from surgeries performed on Tuesdays. The influx of post-surgery emergencies 

contributes to heightened patient arrivals, creating increased congestion on Wednesdays.

In terms of Hospital-Associated Infections (HAIs), there has been a consistent number 

of patients flagged as “suspected” for possible HAI infections. The data reveals that, on 

average, the number of patients contracting infections on a single day is 3, with occasional 

peaks reaching up to 6 patients on certain days Fig. 7(a). Note that the numbers reported in 

our obtained data are “suspected” cases, a small of which are later confirmed by rigorous 
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lab/wet tests as suggested by the CDC (the Centers for Disease Control and Prevention). The 

confirmed cases are not reported in the data.

The analysis of the boxplot in Fig. 7(b) reveals noteworthy variations in the number of 

infections across different days of the week. Notably, the median number of infections 

remains relatively consistent throughout the week. However, the highest count of infections 

is observed on Monday and Thursday, both weekdays when patient arrival rates are notably 

elevated. The correlation between higher infection counts on weekdays and increased patient 

arrival rates suggests that a crowded hospital environment may contribute to prolonged 

wait times for treatment. This extended waiting period exposes patients to a heightened 

risk of Healthcare-Associated Infections (HAIs). The data underscores a crucial connection 

between the duration of patient waiting and an increased susceptibility to infections, 

emphasizing the need for targeted interventions to mitigate these risks within the healthcare 

setting.

According to Peterson (2020) on weekends, the Length of Stay (LOS) in the ED tends to be 

higher, partly because of the processing dynamics of laboratories. Laboratories experience 

reduced staffing levels on weekends, leading to delays in test processing and reporting. 

This delay in test results contributes to longer patient stays in the Emergency Department, 

highlighting a key factor in the observed weekend effect on LOS.

4.2. Simulation experiments

Two distinct trails were utilized in the simulation experiments. The first experiment focused 

on developing a patient flow model, utilizing comprehensive information obtained from 

local hospital data. This model was subsequently validated. The second experiment centered 

around an infection model, incorporating parameters such as the specific areas patients 

traverse and the duration of their stays. This infection model provides insights into the 

dynamics of infection transmission based on patient movement within different sections of 

the healthcare environment. In the following, we describe these two sets of results.

4.2.1. Validating simulation model—Validation of the model development process 

refers to estimating unknown free parameters of the simulation model so that the simulation 

outputs match the observed data. According to Law, Kelton, and Kelton (2007), the 

validation process occurs in two pivotal phases, mirroring established practices in simulation 

methodology. Step 1 involves an expert review and Step 2 involves testing the model 

accuracy with either a numerical or discussion method. Similarly, experts reviewed the 

proposed conceptual model to make sure it was correct and aligned with existing knowledge 

before moving on to the implementation stage. Post-implementation, the validation process 

focused on the accuracy of the simulation model, adopting a distinctive approach. Instead 

of traditional numerical methods, the validation process involves partitioning the entire 

dataset into two partitions: one is called the training dataset, which is used to estimate 
the parameters of the model, and the other one is called the testing dataset, which is used 

match with the simulation output against once the estimated parameters are used (similar to 

machine learning practices).
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In particular, three parameters in the patient flow model were estimated from the training 

dataset: “Decide to stay1”, “Decide to stay2”, and “inpatient care”. To compare and obtain 

values for optimization, “LWBS” (Left Without Being Seen), “AWTR” (Away without 

therapeutic response), and the number of “inpatient” cases were utilized. More specifically, 

the values of the three parameters are determined in a fashion so that the three outputs 

obtained from the simulation become close to the corresponding data obtained from our 

study hospital. The degree to which the simulation outputs differ from the real data is 

measured in Mean Squared Error (MSE), and the goal of parameter estimation is to 

minimize this error. Let Θ = θ1, θ2, …  be the list of parameters of the simulation, sim t; Θ
and obs t  be the simulated and observed output vectors, which consist of counts of LWBS, 

AWTR, and “inpatient”, for tth time instance (here, a day, in our case), the parameter 

estimation boils down to finding Θ so as to—

min
Θ

1
T ∑

t = 1

T
(sim(t; Θ) − obs(t))2

(1)

Fortunately, AnyLogic provides a tool, called “experimentation”, by which the optimal 

parameters can be determined once the stated objective function (here, the MSE, as 

shown in Eq. (1)) and the possible ranges of parameter values (cf. Table 2) are specified. 

Consequently, the optimized parameter values we obtained from this process were 0.96, 

0.98, and 0.90, respectively, as shown in Table 4.

A similar optimization approach was applied to the infection model. Recall from Fig. 2 that 

the ED facility is divided into three areas: Area 1, Area 2, and Area 3, each corresponding to 

an infection parameter (“infection 1”, “infection 2”, and “infection 3”), and their respective 

values were estimated from the actual data set provided by the hospital and compared with 

the simulation outputs. The resulting optimized values for these parameters are 0.005, 0.01, 

and 0.005, respectively (shown in Table 4).

The optimization process is conducted using the possible value ranges from Table 4 

and using the hospital data from August and September (training dataset). The resulting 

parameters are then applied to simulate the cases in October and November (testing dataset). 

The results of the validation tests appear in Figs. 8 and 9, for both the Patient Flow Model 

and the Infection Model. These visualizations encompass data from both training and testing 

datasets. The close correspondence between simulated and observed values during this 

period serves as a validation of the model’s accuracy. The mean squared error (MSE) of the 

simulation for each of these validation tests can be seen in Table 5.

4.2.2. HAI incidences in ED areas—The presented plot in Fig. 10 shows the 

incidence of infections across three key areas within the Emergency Department (ED): the 

waiting room (Area 1), the service room (Area 2), and the overall ED (Area 3). Notably, 

the highest number of infections is observed in the service room (Area 1), followed by 

the overall ED (Area 3), and then the waiting room (Area 2). This pattern implies that 

the service room stands out as the most infectious area in the ED. Given that patients 
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spend extended periods in this space for both waiting and receiving treatments, the elevated 

infection count underscores the significance of prolonged patient exposure. It is noteworthy 

that the service room, being the primary site for medical procedures, is inherently associated 

with increased contact with medical devices and equipment, potentially contributing to the 

heightened risk of Healthcare-Associated Infections (HAIs). This finding underscores how 

the amount of time patients spend in certain risky areas, such as the service room, is closely 

linked to a higher chance of getting infections. It highlights the urgent need for specific 

plans to reduce these risks in healthcare settings.

4.2.3. Simulation under different scenarios—Once the patient-flow and infection 

model is validated from data, the simulation is conducted under three scenarios to further 

study the various aspects of hospital operations on HAI incidences. These three scenarios 

are:

• Scenario I: Higher patient arrival rates

• Scenario II: Fewer beds available in ED

• Scenario III: Higher severity of illness in patients

In Scenario I, the patient arrival rate is doubled to evaluate its impact on the density of 

patient influx and subsequently its effects on infection rates. Fig. 11 illustrates the outcomes, 

showing that an increase in patient rates significantly affects infection rates across all three 

areas. Compared to the baseline scenario, higher infection rates in all areas are observed. 

This increase can be attributed to the higher number of patients in the same area, leading to 

increased delay times and, consequently, heightened susceptibility to infections.

Scenario II decreases the number of available beds from 39 to 25 to explore its impact on 

infection rates. Fig. 12 illustrates that this change significantly influences Area 1, where 

people experience longer wait times in the waiting room due to reduced bed availability. 

As individuals wait, their susceptibility to infections increases, particularly affecting Area 1 

compared to the baseline scenario.

Finally, Scenario III elevates the severity level of patients, transitioning from 25% to 40%. 

The objective was to assess the impacts of this severity level change, and the results, 

depicted in Fig. 13, indicated a notable increase in infections within Area 1 compared to 

the baseline scenario. This outcome is attributed to the heightened demand for beds when 

patients have higher severity levels. Consequently, the existing bed occupancy may limit the 

availability of new patients, prompting them to wait in the designated waiting room area. 

Unfortunately, this waiting period exposes patients to a higher susceptibility to infections. 

The scenario alteration sheds light on the intricate interplay between patient severity, bed 

availability, and the subsequent infection dynamics within the healthcare system.

5. Conclusion and future works

Our exploration into the dynamics of patient movement within the Emergency Department 

(ED) has revealed compelling insights. In our experimental model, we observed a distinct 

pattern—patients predominantly allocate more time to the Treatment area, followed by 
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the overall ED, and then the waiting room as they await bed availability. Notably, the 

Treatment area exhibited a higher infection rate compared to other sections, prompting 

a closer examination of the relationship between patient location, duration of stay, and 

infection incidence.

This investigation provides compelling evidence supporting the hypothesis that infection 

rates are directly proportional to both the specific areas patients occupy and the duration of 

their stay. The longer patients spend in targeted ED zones, particularly within treatment or 

service areas, corresponds with an elevated risk of infection. These findings underscore the 

nuanced interplay between spatial and temporal factors in influencing infection dynamics 

within healthcare environments.

In essence, our study emphasizes the importance of considering both the physical trajectory 

and time spent within ED areas to formulate effective strategies for infection prevention. 

These insights contribute significantly to the broader conversation surrounding patient safety 

in emergency care settings, paving the way for more targeted interventions and improved 

healthcare outcomes.

Future works.

In the subsequent phase of our research, an ongoing collaboration with the University Health 

Medical Center has unfolded promising avenues for novel initiatives. This collaborative 

effort involves the real-time tracking of patient’s movements using the installed Real-Time 

Location Systems (RTLS) with a particular focus on high-risk areas within the healthcare 

facility. The incorporation of real-time analytics capabilities represents a groundbreaking 

approach that facilitates swift, data-driven decisionmaking. By harnessing this innovative 

strategy, we aim to actively address and mitigate the spread of Hospital-Acquired Infections 

(HAIs) in the forthcoming stages of our research. This collaborative approach holds the 

potential to significantly enhance patient safety by modeling the transmission dynamics 

of HAIs. The insights gained from this real-time data will enable targeted interventions, 

offering a proactive means of limiting the transmission of infections within the hospital 

setting.

Discussion.

The construction of the flowchart in Fig. 1 must align with the specific flow of the 

emergency department. However, the techniques employed can be adapted to accommodate 

the unique flow of other departments. This flexibility allows for the application of the 

same methodology to study different departmental workflows. Moreover, the proposed 

model is applicable to other patient-related departments, including inpatient wards, intensive 

care units (ICUs), and coronary care units (CCUs), for identifying Healthcare-Associated 

Infections (HAI). Furthermore, it can be effectively utilized in various nursing units across 

healthcare facilities. The versatility of the model allows for its implementation in diverse 

clinical settings, thereby enhancing the identification and management of HAIs across 

different patient care environments.
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Fig. 1. 
An in-depth look at the procedural steps within the Emergency Department in University 

Health Medical Center, presented in a comprehensive flowchart diagram.
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Fig. 2. 
Simulation of patient flow in an emergency department (modeled in AnyLogic). The 

diagram features rectangular boxes with clocks, representing “delay blocks” for patient 

services, and diamonds indicating binary decision points, where patients take one route or 

the other (with some random probabilities). Queues signify patient waiting areas, while 

bubbles with an X mark the endpoint and small bubbles on the left denote parameters used 

in the model.
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Fig. 3. 
(a) Bar chart of popular HAI cases in the emergency department. In our data obtained from 

our Hospital, 75% are (suspected) UTI cases, 7% are (suspected) MRSA, and 18% are other 

HAI(suspected) cases. (b) In Figure a, where “Other HAI” cases are indicated, this segment 

provides a breakdown of specific infection names falling under the category of “Other HAI” 

and their respective percentages.
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Fig. 4. 
Schematic diagram of patient flow in the Emergency Department (ED) with highlighted 

infection areas.
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Fig. 5. 
Schematic illustration of transmission routes of hospital-acquired infections (the figure is 

cited from Puspasari et al. (2022)).
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Fig. 6. 
Exploring the daily patient arrival rate at the Hospital’s emergency department and 

contrasting the density between weekdays and weekends. Weekdays (Monday through 

Friday) have a higher number of admissions than weekends (Saturday and Sunday).
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Fig. 7. 
(a) A closer look at the infection density rate within the Emergency Department of the local 

hospital, (b) A day-wise analysis of infection cases in the Emergency Department, including 

counts and identifying the peak day of the week, (c) Analyzing the Length of Stay in the 

Emergency Department on a daily basis to pinpoint the peak day of the week.
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Fig. 8. 
Boxplots for validation outcomes of patient flow model, illustrating variations in testing data 

simulation versus training data simulation.
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Fig. 9. 
Density plots for validation outcomes of infection model, illustrating variations in testing 

data simulation versus training data simulation for infection counts in ED.
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Fig. 10. 
Exploring infection patterns in the ED from a simulation model, highlighting differences in 

occurrence across three distinct areas.
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Fig. 11. 
Exploring infection patterns in the ED, highlighting differences in occurrence across three 

distinct areas when the patient rate is double.
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Fig. 12. 
Exploring infection patterns in the ED, highlighting differences in occurrence across three 

distinct areas when the number of available bed is less.
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Fig. 13. 
Exploring infection patterns in the ED, highlighting differences in occurrence across three 

distinct areas when the severity level is higher.
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Table 1

Distribution of different delay blocks used in the simulation.

Block name Distribution Average time (min)

Triage Uniform(5,15) 10

Vital in traige1 Uniform(5,10) 7.5

Vital in traige2 Uniform(5,10) 7.5

Bedded In the ED1 Uniform(5,15) 10

Bedded in the ED2 Uniform(60,120) 90

Waiting Room Gamma(α, β) 35

Service+Waiting Room Gamma(α, β) 150

Discharge area Uniform(10,20) 15

Admission Area Uniform(10,20) 15
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Table 2

Parameter ranges assigned for Experimentation in AnyLogic.

Parameter Type Value Step

Immediate bedding Fixed 0.20 –

Patients per day Variable 164 ± 50 –

Bed capacity Fixed 39 –

Deciding to stay1 Range 0.5–1.0 0.01

Deciding to stay2 Range 0.5–1.0 0.01

Inpatientcare Range 0.0–0.5 0.01
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Table 3

Summary statistics of 11 months data.

Aug 2022 to Jun 2023

Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun

Total Admitted Patients (monthly) 5070 4887 5074 4912 4874 4943 4530 5267 5100 5277 5123

Median Admitted Patients (per day) 163 171 164 166 161 163 159 172 168 173 170

Avg. Length of Stay (hours) 5.87 5.78 5.41 5.79 5.92 5.32 5.42 5.96 5.19 5.15 5.38

Median Infection Count (per day) 3 3 3 3 3 4 2 2 3 3 3

Median Inpatient Number (INP) (per day) 14 16 18 20 14 13 15 17 17 17 16

Median LWBS (per day) 5 3 4 3 6 4 4 6 2 4 5

Median AWTR (per day) 4 3 3 2 2 2 4 5 4 5 4
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Table 4

Parameter values obtained by AnyLogic’s optimization method.

Parameter Value

Decide to stay1 0.960

Decide to stay2 0.980

Inpatientcare 0.090

Infection 1 0.005

Infection 2 0.010

Infection 3 0.005
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Table 5

Mean Squared Error (MSE) for parameter estimation.

Model MSE value

Patient Flow model 91.05

Infection Model 2.47
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